
Week 3 - Monday

 What did we talk about last time?
 Defining interfaces
 Extending interfaces

 The idea of inheritance is to take one class and generate a
child class

 This child class has everything that the parent class has
(members and methods)

 But you can also add more functionality to the child
 The child can be considered to be a specialized version of the

parent

 The key idea behind inheritance is safe code reuse
 You can use old code that was designed to, say, sort lists of
Vehicle objects, and apply that code to lists of Car objects

 All that you have to do is make sure that Car is a subclass (or
child class) of Vehicle

 Java respects the subclass relationship
 If you have a Vehicle reference, you can store a Car object

in that reference
 A subclass (in this case a Car) is a more specific version of the

superclass (Vehicle)
 For this reason, you can use a Car anywhere you can use a
Vehicle

 You cannot use a Vehicle anywhere you would use a Car

 As long as Car is a subclass of Vehicle, we can store a Car
in a Vehicle reference

 Even in an array is fine

 Storing a Vehicle into a Car doesn't work

Vehicle v = new Car("Lancer Evolution"); // okay

Vehicle[] vehicles = new Vehicle[100];
for(int i = 0; i < vehicles.length; i++)
vehicles[i] = new RocketShip(); // cool

Car c = new Vehicle(); // gives error

 All this is well and good, but how do you actually create a
subclass?

 Let's start by writing the Vehicle class

public class Vehicle {
public void travel(String destination) {

System.out.println("Traveling to " +
destination);

}
}

 We use the extends keyword to create a subclass from a
superclass

 A Car can do everything that a Vehicle can, plus more

public class Car extends Vehicle {
private String model;
public Car(String s) { model = s; }

public String getModel() { return model; }

public void startEngine() {
System.out.println("Vrooooom!");

}
}

 There is a part of the Car class that knows all the Vehicle
members and methods

Car car = new Car("Camry");
// Prints "Camry"
System.out.println(car.getModel());
// Prints "Vrooooom!"
car.startEngine();
// Prints "Traveling to New York City"
car.travel("New York City");

 Each Car object actually has a Vehicle
object buried inside of it

 If code tries to call a method that isn't
found in the Car class, it will look deeper
and see if it is in the Vehicle class

 The outermost method will always be
called

Car

model

getModel()
startEngine()

Vehicle

travel()

 A child class has to create a version of the parent class "inside"
itself

 Consequently, the first line of a child class constructor is
reserved for a call to the parent constructor

 If the parent has a default constructor (with no arguments), no
call is necessary

 Otherwise, a call to the parent constructor must be made by
using the keyword super, followed by parentheses and the
arguments passed to the parent constructor

 Here's a simple Food class we'll use for some constructor examples
 Since Food doesn't have a default constructor, any children must call its

constructor that takes a String followed by an int

public class Food {
private String name;
protected int calories;

public Food(String name, int calories) {
this.name = name;
this.calories = calories;

}
}

 The FoieGras class extends Food and consequently must call the
Food constructor as the first thing in its constructor

 The FoieGras constructor can be completely different from the Food
constructor as long as it calls the Food constructor correctly

public class FoieGras extends Food {
private int grams;

public FoieGras(int grams) {
super("Foie Gras", 462*grams/100);
this.grams = grams;

}
}

 In addition to using super() to call a parent constructor, one
constructor in a class could use this() to call another constructor in the
same class to set up the object

 The chain of constructor calls must end with a constructor that calls the
parent constructor

public class FoieGras extends Food {
private int grams;

public FoieGras() { // Default constructor assumes 180 grams
this(180);

}
public FoieGras(int grams) {

super("Foie Gras", 462*grams/100);
this.grams = grams;

}
}

 In addition to public and private modifiers, the protected
keyword is meaningful in the context of inheritance
 Methods and members that are public can be accessed by any code
 Methods and members that are private can only be accessed by

methods from the same class
 Methods and members that are protected can be accessed by code

in the same package and by methods of any classes that inherit from the
class

 Hard-core OOP people dislike the protected keyword since it
allows child classes to fiddle with stuff that they probably
shouldn't

 The Milk class can change the calories field because it's protected

public class Milk extends Food {
private boolean isSkim = false;
public Milk(int cups) {

super("Milk", 148*cups);
}
public void skimFat() {

if(!isSkim) {
calories *= 0.56;
isSkim = true;

}
}

}

 The Object class is the parent of all reference types
 You can store any reference in an Object reference

 Although it's convenient to be able to put anything in an
Object, you can't do much with it unless you cast it back to
something

 Object is the only class that doesn't have a parent

Object object1 = "Goats";
Object object2 = new Wombat();
Object object3 = new double[100];

 If you don't explicitly state which class your class extends, it
extends Object

 Because everything inherits (directly or indirectly) from Object,
there are some methods that every object of every class has:
 clone()
 equals(Object other)
 finalize()
 getClass()
 hashCode()
 notify()

 toString()
 wait()
 wait(long timeout)
 wait(long timeout, int
nanoseconds)

 Some Object methods come up frequently:
Return type Method Use

boolean equals(Object other)
Tests if two objects are the same, should be
overridden by classes to be meaningful

Class<?> getClass()
Returns an object representing the class of the
object

int hashCode()
Returns a hash value for the object, useful for
hash tables, should be overridden by classes to
be meaningful

String toString()
Returns a String representation of the object,
should be overridden by classes to be meaningful

 You can even store a primitive value into an object reference
 But it will use a feature called automatic boxing

 In other words, the primitive type is boxed into an appropriate
wrapper class

 In this case, an Integer object is created that contains 7
 There are situations where we have to box primitive types into

reference types, but doing so is inefficient

Object number = 7;

 We can imagine a hierarchy of inheritance starting with a Person with the
following members:
 Name (final)
 Age

 Student extends Person and adds:
 Major
 GPA

 Politician extends Person and adds:
 Political party

 OtterbeinStudent extends Student and adds:
 ID number (final)

 Members should have getters and setters as appropriate
 All classes should override the toString() and equals() methods

 Lab 3 is tomorrow
 On Wednesday, we'll talk about overriding methods and

polymorphism

 Read Chapter 17
 Keep working on Project 1

	COMP 2000
	Last time
	Questions?
	Project 1
	Concept of Inheritance
	Inheritance
	Code reuse	
	Subclass relationship
	Subclass example
	Inheritance Mechanics
	Creating a subclass
	Extending a superclass
	Power of inheritance
	A look at a Car
	Constructors
	Constructors
	Food class
	FoieGras class
	Using this
	protected keyword
	Using protected
	Object class
	Object class
	Object methods
	Important Object methods
	Even primitives…sort of
	Inheritance Examples
	The Person class
	Upcoming
	Next time…
	Reminders

